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Abstract

We provide a brief overview of the Steiner ratio problem in its original Euclidean

context and briefly discuss the problem in other metric spaces. We then review

literature in Steiner distance problems in general graphs as well as in trees.

Given a connected graph G we examine the relationship between the Steiner k-

diameter, sdiamk(G), and the Steiner k-radius, sradk(G). In 1990, Henning, Oeller-

mann and Swart [Ars Combinatoria 12 13-19, (1990)] showed that for any con-

nected graph G, sdiam3(G) ≤ 8
5 srad3(G) and conjectured that for all k ≥ 2 and

a connected graph G, sdiamk(G) ≤ 2(k+1)
2k−1 sradk(G). The paper also included an

incorrect proof that sdiam4(G) ≤ 10
7 srad4(G). We provide a correct proof that

sdiam4(G) ≤ 10
7 srad4(G) and show that for k ≥ 5, sdiamk(G) ≤ k+3

k+1 sradk(G). By

construction, we also show that the latter of these bounds is tight for each k ≥ 5.

We then examine the Steiner distance of large sets in hypercubes. In particular,

we show that for k = O(2n/n), the Steiner k-diameter of the n-cube is k + Θ( 2n
√
n
)

using a recent result of Griggs. This section is a joint work with Éva Czabarka and

László Székely.

Finally, we move to structural properties of graphs in the context of crossing num-

bers. For positive integers n and e, let κ(n, e) be the minimum number of crossings

among all graphs with n vertices and at least e edges. Under the condition that

n � e � n2, Pach, Spencer, and Tóth [Discrete and Computational Geometry 24

623-644, (2000)] showed that κ(n, e)n2

e3 tends towards a positive constant (called the

midrange crossing constant) as n → ∞. We extend their proof to show that the

midrange crossing constant exists for graph classes that satisfy a certain set of graph
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properties. As a corollary, we show that the the midrange crossing constant exists

for the family of bipartite graphs. This section is a joint work with Éva Czabarka,

László Székely, and Zhiyu Wang.
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Chapter 1

Prelude: The Euclidean Steiner Tree Problem

1.1 An introduction to the Euclidean Steiner tree problem

The Euclidean Steiner tree problem has a rich history, intermittently examined by

mathematicians over several centuries. In their history of the problem, Brazil, Gra-

ham, Thomas, and Zachariasen provide a clear formulation of the problem.

Problem 1.1. [9] Given a set N of n points in the plane (often called terminal

points), find a system of line segments such that the union of the line segments forms

a connected set containing N , and such that the total Euclidean length of the line

segments is minimized.

Necessarily, the resulting system of line segments must form a tree, i.e., the re-

sulting structure is connected and contain no cycles. A minimal spanning tree of N ,

MST (N), is a tree having only elements of N as vertices and smallest possible length.

A naive approach to the Euclidean Steiner tree problem would be to apply efficient

algorithms, such as Dijkstra’s algorithm (See [17]), to find a minimum spanning tree

of N [28]. However, by adding additional points, called Steiner points, it is possible

to find trees of potentially smaller length. For example, if we consider the 4 points

at the corner of a unit square, one can find a smaller tree spanning N by including a

Steiner point at the center of the square. Still more, by including two Steiner points,

one can find a still smaller tree spanning N . Figure 1.1 illustrates this fact. The

smallest tree spanning N without restricting the number of Steiner points is called a

Steiner tree for N , and denoted by ST (N).
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0 Steiner Points 1 Steiner Point 2 Steiner Points
A B

CD

A B

CD

R

A B

CD

R1 R2

Figure 1.1 Spanning trees for the unit square using 0, 1, or 2 Steiner points.
The Steiner points are labeled by the letter R.

1.2 History of the Euclidean Steiner tree problem

Following most named results in mathematics, the origins of the problem are not

found with Steiner. The following restriction of the problem was examined by Fermat

around 1641.

Problem 1.2 (as translated in [9]). [36] Given three points, a fourth is to be found,

from which if three straight lines are drawn to the given points, the sum of the three

lengths is minimum.

This is a restriction of the Steiner tree problem to three terminal points and a

single Steiner point. A solution to the problem was produced by Italian mathemati-

cian Evangelista Torricelli in the same century [9]. This restriction of the Steiner tree

problem is known as the Fermat–Torricelli problem.

The first known (full) formulation of the Euclidean Steiner tree problem was made

in the 1800’s by French Mathematician Joseph Diaz Gergonne. In the inaugural

volume of his journal Annales de mathématiques pures et appliquées, more commonly

known as Annales de Gergonne, Gergonne introduced the problem gradually through

a series of related questions.

2
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Initially, Gergonne proposed what is essentially a retelling of the Fermat–Torricelli

problem in a concrete setting.

Problem 1.3 (as translated in [9]). [27] An engineer wishes to establish a commu-

nication between three cities, not located in a straight line, by means of a network

composed of three branches, leading at one end to the three cities, and meeting at

the other end at a single point between these three cities. The question is, how can

one locate the point of intersection of the three branches of the network, so that their

total length is as small as possible?

A footnote restated the problem in an abstract setting.

Problem 1.4 (as translated in [9]). [27] One can generalize this problem by asking

how to determine, on a plane, a point whose sum of distances to a number of arbitrary

points located in this plane is minimal. One can even extend to points located in any

manner in space.

On a later page of the same volume, the first full version of the Euclidean Steiner

tree problem was formulated in the following setting.

Problem 1.5 (As translated in [9]). [27] A number of cities are located at known

locations on a plane; the problem is to link them together by a system of canals whose

total length is as small as possible.

The problem was later generalized on page 375 of [27]. The author of the article,

listed as “Subscriber” and believed in [9] to be Gergonne, elaborates on eleven prob-

lems related to the Euclidean Steiner tree problem. In particular, the final of these

problems is translated by [9] as follows:

Problem 1.6 (As translated in [9]). [27] Connect any number of given points by a

system of lines whose total length is as small as possible.

3
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This is the Euclidean Steiner problem in full generality. Gergonne went on to

give a detailed analysis of the problem. A condensed version of Gergonne’s treatment

of the problem was later published in England by “Gallicus,” a Pseudonym for an

unknown mathematician. See [9] for an analysis of the Gergonne’s treatment of the

Euclidean Steiner tree problem as well as the written work of Gallicus.

Following these initial treatments of the Euclidean Steiner tree problem, the prob-

lem was discussed by Carl Fredrick Gauss and Christian Schumacher during a cor-

respondence during the 1830s. In their correspondence, Gauss examined the Steiner

problem restricted to 4 terminal points [9].

This restriction of the Steiner tree problem was the subject of Karl Bopp’s Ph. D.

dissertation in 1879 [8]. In his dissertation, Bopp proved several results which were

later rediscovered in modern treatments (see [52] and [19]) of the Euclidean Steiner

tree problem [9]. The same subject was examined by Hoffman in 1890 [33]. Both

Bopp and Hoffman were motivated by Gauss’s letter and provided citations for it [9].

Hoffman’s paper is of particular interest in that it provides a short discussion of the

general Steiner problem with n terminal points.

Following Hoffman’s paper, there was little development in the Steiner tree prob-

lem until 1934. In this year Jarník and Kössler examined not only the fully generalized

Euclidean Steiner tree problem but also extended the problem to higher dimensional

Euclidean spaces [36] (translated in [40]). According to [9], the paper was largely

ignored by the mathematics community as it was written in Czech. Of particular

importance in this paper are proofs that every Steiner point has degree at least 3 and

that an angle inside of a Steiner tree has measure at least 120◦.

We conclude our historical overview of the Euclidean Steiner tree problem by

mentioning two expositions which brought the problem to new heights in the 20th

century. In 1941 Richard Courant and Herbert Robbins published their classic book

What is Mathematics? [13]. Written towards an audience of non-mathematicians,

4
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the text bears witness to the simplicity of the Steiner tree problem. It is in this pub-

lication that the problem is attributed to Steiner, though no justification is given for

the naming convention. Following the publication of the book, the problem gained

traction in the the mathematical community. In 1968, Gilbert and Pollack [28] pub-

lished a comprehensive overview of the research for the Euclidean Steiner tree problem

for a professional audience and provided a more robust geometric framework for the

problem.

1.3 The general Steiner tree problem and Steiner ratio problem

The Steiner tree problem can be extended to metric spaces beyond the Euclidean

plane. A metric space is a set X with a distance function d, mapping X2 to the

non-negative real numbers, satisfying a finite set of axioms. See [20] for a complete

treatment of metric spaces. Indeed, Steiner tree problems have been examined with

respect to weighted graphs [10], the rectangular metric space [26], as well as general

metric spaces [54]. Numerous extensions of the Steiner tree problem have been exam-

ined (See [34]), but we limit ourselves to the Steiner tree problem in this exposition.

The difficulty in finding effective solutions to the Steiner tree problem extends to

its complexity. Both the Euclidean and rectangular Steiner tree problem have been

shown to be NP-hard [26]. In fact, a version of the Steiner tree problem in graphs

was included in Karp’s original list of NP-complete problems [39].

Given the computational difficulty of finding a Steiner tree for a set of points,

significant effort has been put into finding good approximations of Steiner trees (See

[54] and [10]). Recall that a minimal spanning tree of a set N is a smallest tree

connecting N containing no terminal points other than N , i.e. the smallest tree

containing N and no Steiner points. Let d(MST (N)) denote the weight of a minimal

spanning tee of N . Then, if d(ST (N)) denotes the weight of a Steiner tree of N , one

5
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can analyze the parameter

ρ(X,d) := max
N⊆X

d(MST (N))
d(ST (N)) .

Here, ρ(X,d) gives the maximum ratio of the weight of a minimal spanning tree of N

to the weight of a Steiner tree of N over all N ⊆ X. This ratio is known as the

Steiner ratio problem. For any metric space (X, d), it is known that ρ(X,d) ≤ 2 and

that this bound is tight for certain graphs [58].

Perhaps the most popular version of the Steiner ratio problem is the Euclidean

Steiner ratio problem which asks for the value of ρ in the context of the plane with the

Euclidean metric. As of yet, the ratio is unknown. However a longstanding conjecture

of Gilbert and Pollock seems to be reasonable to this author.

Conjecture 1.7. [28] Suppose that N is a finite set of point in the plane. Then,

max
N⊆X

d(MST (N))
d(ST (N)) = 2√

3
.

A

B

C A

B

C A

B

C

R

Equilateral Triangle d(MST (N)) = 2 d(ST (N)) =
√

3
N = {A,B,C} Steiner point: R

Figure 1.2 An equilateral triangle with unit length. The Steiner point is
labeled R.

Should this bound be correct, it is sharp. This can be easily seen by three points

in the plane forming an equilateral triangle with sides of unit length as illustrated in

Figure 1.2. To create the minimal spanning tree of N , we need two edges of length

6
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2. To create the Steiner tree of N , we add a single Steiner point at the center of the

triangle.

A purported proof of Conjecture 1.7 was published in 1992 [18]. This proof,

however, was shown to be incorrect by Ivanov and Tuzhilin ten years later [35]. While

supplying proof of Conjecture 1.7 would indeed be impressive, we leave that challenge

to another day. In fact, the difficulty in finding Steiner trees in a metric space will

be avoided entirely. Instead we will restrict ourselves to graphs and (mostly) avoid

finding Steiner trees.

7
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Chapter 2

The Steiner Distance in Graphs

2.1 Definitions and examples

Suppose thatG = (V,E) is a graph with vertex set V = V (G) and edge set E = E(G).

We let |G| = |V (G)| denote the order of G and ‖G‖ = |E(G)| denote the size of G.

Given a vertex v ∈ V (G), the degree of v, deg(v), is the number of edges incident to

that vertex. We let δ denote the minimum degree among all vertices in V . The open

neighborhood of v in G is denoted by NG(v) and is defined as the set of all vertices

in G adjacent to v. The closed neighborhood of v in G is denoted by NG[v] and is

defined as the union NG(V ) ∪ {v}.

The distance in G between two vertices u, v ∈ V , denoted dG(u, v), is the length

of the shortest path in G between u and v. When the context is clear, we omit G and

write d(u, v) for the distance between u and v in G. If there is no path between u

and v in G, we say that dG(u, v) =∞. The eccentricity of a vertex v in G is defined

as e(v) := max{dG(u, v) : u ∈ V (G)}. The radius, rad(G), is defined as

rad(G) := min{e(v) : v ∈ V (G)}

and the diameter, diam(G), is defined as

diam(G) := max{e(v) : v ∈ V (G)}.

The center of G, denoted C(G), is the subgraph induced by all vertices v ∈ V (G)

such that e(v) = rad(G). If H is a subgraph of G and v ∈ V (G), then the distance

from v to H, denoted dG(v,H) is defined as min{dG(v, u) : u ∈ V (H)}.

8
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The distance between two vertices v and u can be viewed as the minimal size of

a connected subgraph (in this case, a path) of G containing v and u. This suggests

a generalization of distance. Introduced in [12], the Steiner distance in G of a non-

empty set S ⊂ V (G), denoted dG(S), is defined as the size of the smallest connected

subgraph of G containing all elements of S. When the context is clear, we simply

write dG(S) as d(S). In their paper introducing the Steiner distance, Chartrand,

Oellermann, and Swart made the following observations.

Observation 2.1. [12] Suppose that H is a connected subgraph of G containing S

with ‖H‖ = d(S). Then,

1. The subgraph H is a tree. Such a tree is called a Steiner tree of S.

2. The set of end vertices (vertices of degree 1) of H must be a subset of S.

Consider the graph G illustrated in Figure 2.1. The edges of a Steiner tree for

the set {A,B,D} are in bold. This Steiner tree contains 5 edges which implies

d({A,B,D}) = 5. This example illustrates that a Steiner tree is not unique as the

shortest path from A to B through D also contains 5 edges.

A

DB C

Figure 2.1 The graph G. A Steiner tree of {A,B,D} is
in bold.

Given an integer k ≥ 2, the Steiner k-eccentricity of a vertex v in G, denoted

ek(v), is defined as the maximum Steiner distance of all vertex subsets of G of size k

9
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containing v. More succinctly,

ek(v) = max
S⊂V (G),|S|=k

{d(S) : v ∈ S}.

The Steiner k-radius, denoted sradk(G), is then defined as

sradk(G) := min{ek(v) : v ∈ G},

while the Steiner k-diameter, denoted sdiamk(G) is then defined as

sdiamk(G) := max{ek(v) : v ∈ G}.

The Steiner k-center, Ck(G), is the subgraph induced by all vertices v with ek(v) =

sradk(G). In regards to Figure 2.1, it is not hard to see that sdiam3(G) = e3(A) = 7,

while srad3(G) = e3(D) = 5. The 3-center of G, C3(G) is composed solely of the

vertex D. For a general graph, the following connection between the Steiner distance

and the standard distance is immediate.

Observation 2.2. If G is a connected graph and v ∈ V (G), then e2(v) = e(v),

srad2(G) = rad(G), sdiam2(G) = diam(G), and C2(G) = C(G).

2.2 Steiner distance results generalizing standard distance results

Many classic results for the standard distance have been generalized for the Steiner

distance. In this section, we provide a number of these generalizations. In 1989,

Erdős, Pach, Pollack, and Tuza proved the following relationship between the diam-

eter of a connected graph and its minimum degree.

Theorem 2.3. [23] If G is a connected graph of order n and minimum degree δ, then

sdiam2(G) ≤ 3n
δ + 1 +O(1).

Ten years later, this result was extended to the Steiner k-diameter by Dankelmann,

Swart, and Oellermann.

10
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Theorem 2.4. [16] Suppose that G is a connected graph of order n and minimum

degree δ. Then, if 2 ≤ k ≤ n is an integer,

sdiamk(G) ≤ 3n
δ + 1 + 3k.

Ali, Dankelmann, and Mukewmbi [4] later improved this bound and gave even

better bounds for graphs which are triangle-free or contain no 4-cycles. In [16],

Dankelmann, Swart, and Oellermann generalized even more diameter results to the

Steiner k-diameter. In 1985, Harary and Robinson proved the following fact.

Theorem 2.5. [31] Suppose that G is a connected graph with complement Ḡ. If

sdiam2(G) ≥ 3, then sdiam2(Ḡ) ≤ 3.

A generalized version for the Steiner k-diameter is as follows.

Theorem 2.6. [16] LetG be a connected graph with complement Ḡ and sdiamk(G) =

k + ` where 1 ≤ ` ≤ k − 1. Then

sdiamk(G) + sdiamk(Ḡ) ≤ 3k.

More recently, Mao [43] gave general bounds improving on those in Theorem 2.6

and obtained sharp results for sdiam3(G) + sdiam3(Ḡ) and sdiam3(G) · sdiam3(Ḡ).

We wish to include one final result proven by Dankelmann, Oellermann, and Swart,

which can be used to bound sdiamk(G).

Theorem 2.7. [16] Suppose that G is a connected graph of order |G| = n and

sdiamk(G) = dk. Then

‖G‖ ≤ dk +
(
k − 1

2

)
+
(
n− dk − 1

2

)
+ (n− dk − 1)(k + 1).

Furthermore, if G is 2-connected, then

sdiamk(G) ≤
⌊
n(k − 1)

k

⌋
.

Both these bounds are sharp.

11
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The first of these results is an extension of a result of Ore [47] and can be used

to find an upper bound on the Steiner k-diameter of G while the sharpness of the

second bound is witnessed by the cycle with n vertices.

In 2013, Ali [3] examined the Steiner k-diameter in relation to the girth, length

of a shortest cycle, of a graph.

Theorem 2.8. [3] Suppose that G is a connected graph of order n, girth g, and

minimum degree δ ≥ 3. Let 2 ≤ k ≤ n be an integer.

1. If g is odd, then

sdiamk(G) ≤ g
n

K
+ (g − 1)k − 2g + 1, where K = 1 + δ

(δ + 1)(g−1)/2 − 1
δ − 2 .

2. If g is even, then

sdiamk(G) ≤ g
n

L
+ (g − 1)k − 2g + 2, where L = 2δ (δ − 1)g/2 − 1

δ − 2 .

A graph parameter with applications to chemistry is the Wiener index. Given a

connected graph G, the Weiner index W (G) is the sum off all distances between all

pairs of vertices. That is

W (G) =
∑

{u,v}⊂V (G)
d(u, v).

The Wiener index was introduced in 1947 by Harold Wiener, a chemistry student, as

a way to predict the boiling points of alkanes [45]. Since its inception, the Wiener

index has been the subject of much mathematical attention (See for instance [11]

and [42]). A related parameter is the average distance of the graph G, µ(G), which

evaluates the average distance between all pairs of vertices in a graph. This is directly

related to the Wiener index by the following equation:

µ(G) = W (G)(
|V (G)|

2

) .

12



www.manaraa.com

Both of these parameters are easily generalized for the Steiner distance. Given an

integer k ≥ 2, the Steiner k-Wiener index, Wk(G) is defined by

Wk(G) :=
∑

S⊂V (G),|S|=k
d(S).

Similarly, the Steiner k-average distance, µk(G), is defined by

µk(G) := Wk(G)(
|V (G)|
k

) .
In 1996, Dankelmann et al. [15] computed the following bounds for the Steiner

k-average distance of a tree.

Theorem 2.9. [15] Suppose that G is a connected graph of order n and 2 ≤ k ≤ n.

Then,

k − 1 ≤ µk(G) ≤ k − 1
k + 1(n+ 1).

Equality is achieved on the left if and only if G is (n + 1− k)-connected and on the

right if and only if G is a path or n = k.

Setting k = 2 in Theorem 2.9, this result generalizes the following result of En-

tringer, Jackson, and Snyder [21].

Theorem 2.10 ([21]). Suppose that G is a connected graph of order n. Then,

1 ≤ µ(G) ≤ 1
3(n+ 1).

Equality is achieved on the left if and only if G = Kn, the complete graph with n

vertices and on the right if and only if G is a path.

In the same paper, the authors made the following conjecture relating the Steiner

k-average distance to the standard average distance. The authors were able to confirm

the conjecture for the case when k = 3.

Conjecture 2.11. [15] If G is a connected graph of order n and 2 ≤ k ≤ n, then

µk(G) ≥ 3k − 1
k + 1µ(G).

This inequality is true for k = 3.

13
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2.3 A look at trees

Restricting to trees, still more can be said about the Steiner k-average distance.

Theorem 2.12. [15] Suppose that T is a tree of order n ≥ k and 2 ≤ m ≤ k − 1,

then

µk(T ) ≤ k

m
µm(T ).

Equality holds if T is a star.

Given the complexity of finding a Steiner tree in a general graph, efficient algo-

rithms for finding SWk(G) or µk(G) seem unlikely. Fortunately, in trees computing

the Steiner k-Wiener index can be more easily completed. In fact, an algorithm was

outlined in [15] showing that it is possible to compute SWk(T ) in O(nk) time.

This simplicity in computing Steiner parameters in trees lends itself to finding the

Steiner k-center of a tree. The following algorithm was given by Oellermann in [46].

Algorithm 2.13. [46] To find the Steiner k-center of a tree, T , of order n ≥ k ≥ 2:

1. H ← T

2. If H has at most k − 1 end-vertices (vertices of degree 1), or if H ∼= K1 or

H2 ∼= K2 and k = 2, output H as H is the Steiner k-center of T and stop;

otherwise continue.

3. Delete all end-vertices from H and replace H with the resulting tree. Then

return to step 2.

Figure 2.2 illustrates algorithm 2.13 on a tree with 5 leaves. Coupling with this

algorithm, Oellermann proved the following theorem, which implies that all trees with

at most k − 1 leaves are the Steiner k-center of some tree.

Theorem 2.14. [46] Fix a tree H. There exists a tree T for which H ∼= Ck(T ) if and

only if one of the following hold:

14
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1. k ≥ 3 and H has at most k − 1 leaves, or

2. k = 2 and H ∼= K1 or H ∼= K2.

C4(T ) = C3(T )C5(T )

−→−→

Figure 2.2 The Tree T with C5(T ) and C4(T ). For
k ≥ 6, Ck(T ) = T .

For the remainder of this dissertation’s content related to the Steiner distance in

graphs, we will focus on the Steiner k-diameter and Steiner k-radius. A classic result

for the standard distance relates the diameter to the radius.

Theorem 2.15. If G is a connected graph, then

diam(G) ≤ 2 rad(G).

This bound is tight as witnessed by a path of even length.

In [12], the following generalization was made for trees.

Theorem 2.16. [12] If T is a tree, then

sdiamk(T ) ≤ k

k − 1 sradk(T ).

This bound is tight, as witnessed by a star with at least k leaves.
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It is not hard to see that if T is a tree with less than k leaves, then sdiamk(T ) =

sradk(T ). We can also prove the following.

Proposition 2.17. Given integers k, r, and d, with k ≥ 2 and k−1 ≤ r ≤ d ≤ k
k−1r,

one can find a tree T with sdiamk(T ) = d and sradk(T ) = r.

While the proof of this result is simple enough, we have not found such a proof in

the literature. For completeness, we include one here.

Proof. If r = d, let T be the path of length r. For r < d, we will construct a “spider,”

T , with k legs. Let a, b be integers such that r = a(k − 1) + b and 0 ≤ b ≤ k − 2.

Construct T so that b legs are of length a + 1, while k − 1 − b legs are of length a,

and one leg is of length d − r. An example of such a spider is illustrated in Figure

2.3 for k = 4, d = 12, and r = 10. We calculate a = 3 and b = 1. Hence, we have

b = 1 leg of length 4, k − 1− b = 2 legs of length 3, and one leg of length d− a = 2.

R

A

B C

D

Figure 2.3 A spider T with sdiam4(T ) = 12
and srad4(T ) = 10.

Since the constructed tree has k leaves, sdiamk(T ) = ‖T‖ = d. To show that

sradk(T ) = r, we use the fact (proven in [12]) that sradk(T ) = sdiamk−1(T ). To

maximize d(S) over all |S| = k − 1, we consider the pendant vertices on the k − 1

longest legs of T . Hence, sdiamk−1(T ) = r and sradk(T ) = r.

16
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For general connected graphs, Theorem 2.16 does not hold for k ≥ 3 as shown in

[32]. In Chapter 3, we find a tight upper bound for the ratio sdiamk(G)/ sradk(G)

for any connected graph G and k ≥ 5.

17
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Chapter 3

The Steiner diameter and Steiner Radius in

General Graphs

3.1 Bounding the Steiner diameter with respect to the Steiner

radius

Restating Theorem 2.15 in the context of the Steiner k-radius and Steiner k-diameter,

we have that for any connected graph G,

sdiam2(G) ≤ 2 srad2(G).

After proving Theorem 2.16, the authors of [12] conjectured their result for all con-

nected graphs.

Conjecture 3.1. [12] Let k ≥ 2 be an integer and G be a connected graph of order

n ≥ k. Then,

sdiamk(G) ≤ k

k − 1 sradk(G).

Soon after, this conjecture was proven incorrect. For each k ≥ 3, the authors of

[32] constructed an infinite family of graphs satisfying sdiamk(G) = 2(k+1)
2k−1 sradk(G).

The simplest member of the family for k = 4 is illustrated in Figure 3.11 by the graph

H4. In the same paper, the following conjecture was made.

Conjecture 3.2. [32] Suppose that G is a connected graph with order at least k.

Then

sdiamk(Gk) ≤
2(k + 1)
2k − 1 sradk(Gk).

18
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Furthermore, the authors provided proofs of the inequality for k = 3, 4. However,

their proof for k = 4 was incorrect.

We break this chapter into the following divisions. In section 3.2, we make nec-

essary definitions and prove some preliminary lemmas required for our main results.

In section 3.3, we provide a correct proof to confirm the conjecture in [32] for k = 4,

showing the following:

Theorem 3.3. If G is a connected graph of order at least 4, then

sdiam4(G) ≤ 10
7 srad4(G).

This bound was shown to be tight in [32]. In section 3.5, we prove our main result:

Theorem 3.4. If G is a connected graph and k ≥ 5 is an integer, then

sdiamk(G) ≤ k + 3
k + 1 sradk(G).

In section 3.5, we show that this bound is tight for each k ≥ 5. It is worth noting

that the bound in Conjecture 3.2 matches that of Theorem 3.4 if k = 5. In section

3.6 we will identify the error in [32]. To summarize, table 3.1 gives the maximum

value of the ratio sdiamk(G)/ sradk(G) for a connected graph G.

Table 3.1 Values of sdiamk(G)/ sradk(G) as
found in [32] and this paper.

k sdiamk(G)/sradk(G) Reference
3 8/5 [32]
4 10/7 [32] and Section 3.3
≥ 5 (k + 3)/(k + 1) Section 3.4

3.2 Definitions and Preliminary Lemmas

Let k ≥ 2 be a positive integer and suppose that G is a connected graph of or-

der at least k. Then there exists a set D = {v1, v2, . . . , vk} ⊂ V (G) such that
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d(D) = sdiamk(G). Similarly, there exists v0 ∈ V (G) satisfying ek(v0) = sradk(G).

We may now make the following definitions, which closely follow definitions made in

[32].

Definition 3.5. Suppose that G is a connected graph of order at least k. Assume

that D = {v1, v2, . . . , vk} with d(D) = sdiamk(G) and ek(v0) = sradk(G). For each

1 ≤ i ≤ k,

1. Define Di := (D \ {vi}) ∪ {v0};

2. Define Ti to be a Steiner tree for Di;

3. Define T ′i to be the smallest subtree of Ti spanning Di \ {v0};

4. Define `i := ‖Ti‖−‖T ′i‖. Without loss of generality, we assume that `1 ≤ `j for

j ≥ 2.

Of course, if v0 ∈ D, we have that sradk(G) = sdiamk(G). So if sradk(G) <

sdiamk(G) we must have v0 /∈ D. It is worth noting that vi is the only element of

D ∪ {v0} not necessarily contained in the tree Ti, while the tree T ′i need not contain

v0. Figure 3.1 illustrates the difference between the trees T1 and T ′1 for k = 3.

v2

v0

v3

v1

`1
The tree T1

v2

v0

v3

v1

The tree T ′1

Figure 3.1 Possible trees T1 and T ′1 for k = 3. Vertices of degree 2 are
omitted.

Note that `i = dTi
(v0, T

′
i ). From Definition 3.5, we make the following observation.
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Observation 3.6. Suppose that k ≥ 2 is an integer and that G is a connected

graph with at least k vertices. Let `i, Ti, and T ′i be defined as in Definition 3.5.

If sdiamk(G) > p sradk(G) for some p > 0, then for each 1 ≤ i ≤ k, we have the

following:

1. ‖Ti‖ ≤ sradk(G) < 1
p

sdiamk(G), and

2. ‖T ′i‖ = ‖Ti‖ − `i <
1
p

sdiamk(G)− `1.

With Observation 3.6 in mind, we now prove our first lemma.

Lemma 3.7. Suppose that G is a connected graph of order n ≥ k. Let `i, Ti, and

T ′i be defined as in Definition 3.5. If sdiamk(G) > p sradk(G) with p > 1, then for

1 ≤ i, j ≤ k with i 6= j, the following hold:

1. dT1(vi, v0) > p− 1
p

sdiamk(G), and

2. dT1(vi, vj) >
p− 1
p

sdiamk(G) + `1.

Proof. For the first inequality, note that adjoining the tree Ti with the path in T1

between vi and v0 generates a connected subgraph of G spanning D. Hence,

‖Ti‖+ dT1(vi, v0) ≥ sdiamk(G),

which implies that

dT1(vi, v0) ≥ sdiamk(G)− ‖Ti‖.

In view of Observation 3.6, we see that

dT1(vi, v0) > sdiamk(G)−
(

1
p

sdiamk(G)
)

= p− 1
p

sdiamk(G).

For the second inequality, we similarly note that adjoining the tree T ′i with the

path in T1 between vi and vj generates a connected subgraph of G spanningD. Hence,

‖T ′i‖+ dT1(vi, vj) ≥ sdiamk(G),
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which implies that

dT1(vi, vj) ≥ sdiamk(G)− ‖T ′i‖.

Applying Observation 3.6 a second time, we have that

dT1(vi, vj) > sdiam4(G)−
(

1
p

sdiamk(G)− `i
)

= p− 1
p

sdiamk(G) + `i

≥ p− 1
p

sdiamk(G) + `1.

With Lemma 3.7 in hand, we make the following observation.

Corollary 3.8. Using the definitions and notation provided in Definition 3.5, if

1 < i 6= j ≤ k and

sdiamk(G) > 10
7 sradk(G),

then

1. dT1(vi, v0) > 3
10 sdiamk(G), and

2. dT1(vi, vj) > 3
10 sdiamk(G) + `1.

Furthermore, if 1 < i 6= j ≤ k and

sdiamk(G) > k + 3
k + 1 sradk(G),

then

1. dT1(vi, v0) > 2
k+3 sdiamk(G), and

2. dT1(vi, vj) > 2
k+3 sdiamk(G) + `1.

With these definitions and results in hand, we are prepared to prove our main

results.
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3.3 Proof of Theorem 3.3

Proof. Suppose towards contradiction that there exists a graph G satisfying

sdiam4(G) > 10
7 srad4(G).

This implies that

srad4(G) < 7
10 sdiam4(G). (3.1)

Suppose that D = {v1, v2, v3, v4} is a set of vertices in G such that d(D) = sdiam4(G)

and v0 ∈ C4(G). For 1 ≤ i ≤ 4, define Di, Ti, T ′i , and `i as in Definition 3.5. Again,

we assume that `1 ≤ `j for j ≥ 2.

We first consider the cases where T1 is a path or a subdivision of the star on

3 vertices. These cases were correctly covered in [32]. We include them here for

completeness.

First, suppose that T1 is a path. Relabel the elements of D1 as u1, u2, u3 and u4

so that the tree T1 is a concatenation of paths u1 − u2 − u3 − u4. See Figure 3.2 for

an illustration of this situation.

u1 u2 u3 u4

v1

> 3
10 sdiam4(G) > 3

10 sdiam4(G) > 3
10 sdiam4(G)

Figure 3.2 The tree T1 as a path. Vertices of degree two not in D1
are omitted.

Now, T1 is composed of three paths between elements of Di. By Corollary 3.8,

each of these paths has length at least 3
10 sdiam4(G). So

srad4(G) ≥ ||T1|| >
9
10 sdiam4(G),

which contradicts equation (3.1).
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Next, we suppose T1 has exactly three leaves. Label them as u1, u2, and u3. Let

u4 be the element of D1 which is an interior vertex of T1 and let s be the vertex of

degree 3 in T1. It is possible that s = u4. Without loss of generality, suppose that u4

lies on the s − u3 path in T1. Define the following distances as illustrated in Figure

3.3.
a := dT1(u1, s) b := dT1(u2, s)

c := dT1(u3, u4) d := dT1(u4, s).

u1

u2

s
u3

v1

u4

b

a

d c

Figure 3.3 The tree T1 with only three leaves.
Vertices of degree two not in D1 are omitted.

Consider the following sum:

(a+ b) + (a+ d) + (b+ d) + 2c = 2a+ 2b+ 2c+ 2d.

The right hand side of this equation counts each edge of T1 twice. Hence, by equation

(3.1),

2a+ 2b+ 2c+ 2d = 2‖T1‖ ≤ 2 srad4(G) < 14
10 sdiam4(G). (3.2)

But Corollary 3.8 implies that the left hand side of the equation is bounded below by

(a+ b) + (a+ d) + (b+ d) + 2c ≥ 5 ·min{dT1(ui, uj) : 1 ≤ i 6= j ≤ 4}

> 5 · 3
10 sdiam4(G)

= 15
10 sdiam4(G),

which contradicts equation (3.2).
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We now suppose that T1 has exactly 4 leaves. We note that T1 has at most two

vertices of degree at least 3. Let s be the vertex of degree at least 3 in T1 closest to

v0. Relabel the leaves of T1 as {v0, u1, u2, u3} so that s is the nearest neighbor (in

T1) of degree at least 3 to u3 as well. Next, let t be the vertex of degree at least 3 in

T1 which is closest to u2 (in T1). It is possible that s = t. Figure 3.4 illustrates this

situation.

By Definition 3.5, we have that `1 is the distance between v0 and s in T1. Define

the following distances as illustrated in Figure 3.4:

a := dT1(u1, t) b := dT1(u2, t)

c := dT1(u3, s) d := dT1(s, t).

v0 u1

u2u3

s t

v1

`1

c b

a
d

Figure 3.4 The tree T1 and the vertex v1. Vertices
of degree 2 are omitted.

We now consider the sum

2(`1 + a+ b+ c+ d) = (`1 + c) + (c+ d+ b) + (a+ b) + (`1 + d+ a).

By Corollary 3.8, the left hand side is bounded below by

(`1 + c) + (c+ d+ b) + (a+ b) + (`1 + d+ a) > 12
10 sdiam4(G) + 2`1,

while, as in the previous case, by equation (3.1), we have that the right hand side is

bounded below by

2(`1 + a+ b+ c+ d) = 2‖Ti‖ <
14
10 sdiam4(G).

25



www.manaraa.com

Combining these inequalities together, we have that

12
10 sdiam4(G) + 2`1 <

14
10 sdiam4(G),

which implies that

`1 <
1
10 sdiam4(G). (3.3)

Alternatively, we may consider the sum

2`1 + 2(`1 + a+ b+ c+ d) = (`1 + d+ b) + (`1 + d+ a) + 2(`1 + c) + (a+ b).

Applying corollary 3.8, we see that

(`1 + d+ b) + (`1 + d+ a) + 2(`1 + c) + (a+ b) > 15
10 sdiam4(G) + `1.

But by equation (3.1), we have that

2`1 + 2(`1 + a+ b+ c+ d) < 14
10 sdiam4(G) + 2`1.

Combining these inequalities together, we see that

15
10 sdiam4(G) + `1 <

14
10 sdiam4(G) + 2`1,

which implies that `1 >
1
10 sdiam4(G), a contradiction of equation (3.3).

3.4 Proof of Theorem 3.4

Proof. Suppose towards contradiction that G is a connected graph with

sdiamk(G) > k + 3
k + 1 sradk(G).

This implies that

sradk(G) < k + 1
k + 3 sdiamk(G). (3.4)

Suppose D = {v1, v2, . . . , vk} is a set of vertices such that d(Dk) = sdiamk(G). Let

v0 ∈ Ck(G). For 1 ≤ i ≤ k, define Di, Ti, T ′i , and `i as in Definition 3.5. Again, we
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assume that `1 ≤ `j for j ≥ 2. We have that ‖T1‖ ≤ sradk(G). Let x be the vertex

in T ′1, which is closest to v0 in T1. It is possible that x = v0. We now root T1 at v0

and consider the following two cases.

Case 1: x ∈ Di \ {v0} = {v2, . . . , vk}.

v0

x
`1

Figure 3.5 A possible picture of the tree T1
in case 1. Unnamed vertices of degree 2 are
omitted.

Since x ∈ Di, we have that dT1(v0, x) = dT1(v0, vi) for some 2 ≤ i ≤ k. Then,

by Corollary 3.8, we have `1 >
2

k+3 sdiamk(G). Traversing T1 via a depth first search

and returning to v0 induces a new labeling of the elements of D1 in the following way:

Let u1, u2, . . . , uk−1 be a relabeling of the vertices v2, . . . , vk in the order in which

these vertices are visited first in the depth first search. By corollary 3.8, we have

that dT1(v0, u1) > 2
k+3 sdiamk(G) and dT1(v0, uk−1) > 2

k+3 sdiamk(G). Furthermore,

corollary 3.8 asserts that d(ui, uj) > 2
k+3 sdiamk(G) + `1. Since `1 >

2
k+3 sdiamk(G),

the length of this traversal is greater than

2 · 2
k + 3 sdiamk(G) + (k − 2)

( 2
k + 3 + `1

)
> 2 · 2

k + 3 sdiamk(G) + (k − 2)
( 2
k + 3 + 2

k + 3

)
= 4(k − 1)

k + 3 sdiamk(G).
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This traversal also visits each edge of T1 exactly twice, which implies that

2 sradk(G) ≥ 2‖T1‖ >
4(k − 1)
k + 3 sdiamk(G).

Since k ≥ 5, we have contradicted equation (3.4).

Case 2: x /∈ Di \ {v0}.

Since x /∈ Di \ {v0}, we have that x has at least 2 children. Pick a child of x, say

c. Let H1 be the tree induced by vertices of the v0c path and descendants of c, and

let H2 be the tree obtained from T1 by removing c and its descendants. Figure 3.6

illustrates the differences between T1, H1, and H2.

The Tree T1 The Tree H1 The Tree H2
v0

x

c

`1

v0

x

c

`1

v0

x
`1

Figure 3.6 A possible picture of T1, H1, and H2 as in case 2. Unnamed
vertices of degree 2 are omitted.

Both H1 and H2 contain elements of Di. We observe that E(H1)∪E(H2) = E(T1)

while the intersection of E(H1) and E(H2) is the path in T1 between v0 and x. Hence,

‖H1‖+ ‖H2‖ − `1 = ‖T1‖ <
k + 1
k + 3 sdiamk(G). (3.5)

It is easy to see that |V (H1) ∩ D1| + |V (H2) ∩ D1| = k + 1 since v0 (and only v0)

is included in both subtrees. As in the previous case, we root H1 and H2 at v0 and

perform a depth first search traversal of each subtree. By the same reasoning as the

previous case, we see that

2‖H1‖ > |V (H1) ∩D1| ·
2

k + 3 sdiamk(G) + (|V (H1) ∩D1| − 2)`1,
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and

2‖H2‖ > |V (H2) ∩D1| ·
2

k + 3 sdiamk(G) + (|V (H2) ∩D1| − 2)`1.

Combining these sums together, we see that

2‖H1‖+ 2‖H2‖ > (k + 1) · 2
k + 3 sdiamk(G) + (k + 1− 4)`1.

Since k ≥ 5, we have that

2‖H1‖+ 2‖H2‖ >
2(k + 1)
k + 3 sdiamk(G) + 2`1.

Hence,

2‖H1‖+ 2‖H2‖ − 2`1 >
2(k + 1)
k + 3 sdiamk(G)

‖H1‖+ ‖H2‖ − `1 >
k + 1
k + 3 sdiamk(G),

which contradicts equation (3.5).

3.5 Sharpness of Theorem 3.4

We now prove that this bound in Theorem 3.4 is tight via a construction. Let k ≥ 5

be an integer. We now outline the construction of a graph Gk satisfying

sdiamk(Gk) = k + 3
k + 1 sradk(Gk).

Begin with a set of k independent vertices, D = {d1, d2, . . . , dk}. Let m = dk+1
2 e.

Define D1 = {d1, d2, . . . , dm} and D2 = {dm, dm+1, . . . , dk}. For each vertex di ∈ D1,

adjoin to each vertex in D1 \{di} a new vertex ai. Let A be the set these new vertices

all such vertices. Similarly, for each vertex dj ∈ D2 define a new vertex bj to be a

vertex with N(bu) = D2 \ {dj}. Let B be the set of all such vertices. Finally, adjoin

a new vertex r to each vertex in A ∪ B. This completes the construction of Gk.

Figures 3.7 and 3.8 illustrate the graphs of G5 and G6, respectively.

We now show that sdiamk(Gk) = k + 3 and sdiamk(Gk) = k + 1 via a series of

three claims. This proves that the bound in Theorem 3.4 is tight for each k ≥ 5.
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The graph G5
r

a3 a2 a1 b5 b4 b3

d1 d2 d3 d4 d5

A B

D1 D2

Figure 3.7 The graph G5. All vertices are
shown.

The graph G6
r

a4 a3 a2 a1 b6 b5 b4

d1 d2 d3 d4 d5 d6

A B

D1 D2

Figure 3.8 The graph G6. All vertices are shown.

Claim 3.9. In the graph Gk, d(D) = k + 3.

Proof. Let T be a Steiner tree of D. Since T spans D, each element of D is incident

to at least one edge in T , so there must be at least k such edges. Let E1 be a set

of k edges of T obtained by selecting precisely one edge incident to each di. Then

the edges of E1 induce a subgraph of Gk whose components are stars with centers

in A ∪ B. As for any u, v ∈ A ∪ B, |∇u ∪ ∇v| ≤ k − 1, we have that Gk[E1], the

subgraph of Gk induced by E1, has at least 3 connected components.

If Gk[E1] contains strictly more than 3 connected components, then at least 3

edges are required to connect these components, which implies that ‖T‖ ≥ k + 3.

Suppose then that Gk[E1] contains exactly 3 connected components, which are stars
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centered on the 3 vertices x, y, z in A∪B (we denote them by Sx, Sy, Sz respectively).

We label them so x is the vertex such that xdm ∈ E1. Without loss of generality

x ∈ A, i.e. x = aj for some 1 ≤ j < m (the case when x ∈ B follows similarly).

As one edge in E1 is incident upon dj we may assume it is ydj and therefore y ∈ A.

Then, the elements of D2 \ {dm} must be contained in Sz, so z = bm.

Observe that dGk
(Sx, Sz) = dGk

(Sy, Sz) = 2 and consider the set E2 of edges of T

that are not in E1. As T is connected, the edges of E2 connect Sz to at least one of

Sx, Sy, so |E2| ≥ 2. If |E2| ≥ 3, then ||T || ≥ k + 3. If E2 = 2, then we need at least

one more edge for all three stars to be connected, so ||T || ≥ k+ 3 in this case as well.

To show that ‖T‖ = k + 3, consider the tree induced by the edge set

{amdi : 1 ≤ i ≤ m− 1} ∪ {bmdi : m+ 1 ≤ i ≤ k} ∪ {dm−1a1, a1dm, dmb1, b1dk}.

An illustration of the Steiner tree of D constructed above is included in Figure 3.9

for the case k = 5. This tree contains exactly (m − 1) + (k −m) + 4 = k + 3 edges

and spans D.

Note that Claim 3.9 implies that ek(di) ≥ k+ 3 for each 1 ≤ i ≤ k. We now move

to showing that ek(G) = k + 1.

Claim 3.10. In the graph Gk, we have that ek(r) = k + 1.

Proof. Let S ⊂ V (Gk) with r ∈ V (Gk) and |S| = k. Suppose s = |S ∩ D|. Since

s ≤ k− 1, we have that (S ∩D) ⊂ (∇a∪∇b) for some a ∈ A and b ∈ B. Then, if we

consider the subgraph induced by the vertex set

S = (S ∩D) ∪ {a, b} ∪ (S \D).

With |S∩D| edges, we connect vertices S∩D to {ab} forming stars Sa, Sb. Adding the

edges ra, rb connects Sa and Sb to a connected subgraphH. Then, with k−1−s edges,

we connect the elements of S \(D∪{r}) to H. In total, we have used k−1+2 = k+1

edges to connect the elements of S. Hence, ek(r) ≤ k + 1.
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To show equality, consider the set V1 = {d1, d2, . . . , dk−1, r}. Any tree spanning V1

must contain at least k − 1 edges between D and A ∪ B. These k − 1 edges induce

at least 2 stars. These stars must be connected to r, which requires at least 2 edges.

So any Steiner tree for V1 contains at least k− 1 + 2 = k+ 1 edges. Such a spanning

tree for V1 in the case k = 5 is illustrated in Figure 3.9.

A Steiner tree for D realizing A Steiner tree for V1 realizing
d(D) = sdiam5(G5) = 8. d(V1) = srad5(G5) = 6.

r

a3 a2 a1 b5 b4 b3

d1 d2 d3 d4 d5

r

a3 a2 a1 b5 b4 b3

d1 d2 d3 d4 d5

Figure 3.9 Steiner trees in the graph G5 for D as in Definition 3.5 and
the vertex set V1 as above. The Steiner trees are in bold.

It should be stated that we have proven sufficient results to show that sradk(Gk) =

k + 1 and sdiamk(Gk) = k + 3. Indeed, we have that sradk(Gk) ≤ ek(r) = k + 1 and

sdiamk(Gk) ≥ k + 3. By Theorem 3.4, we can then infer that sdiamk(Gk) = k + 3

and sradk(Gk) = k + 1. For completeness, however, we will supply a proof requiring

slightly more elbow grease. To do so, we need one more claim.

Claim 3.11. In the graph Gk suppose that v ∈ A ∪B. We have that ek(v) = k + 2.

Proof. Suppose that v is an arbitrary element of A∪B. By Claim 3.10, we have that

ek(r) = k+ 1. Let U1 ⊂ V (Gk) be a vertex set of order k containing v. We may span

U1 by connecting a spanning tree for (U1 ∪ {r}) \ {v} with the edge vr. Hence,

d(U1 ∪ {r}) ≤ d((U1 ∪ {r}) \ {v}) + 1 ≤ ek(r) + 1 = k + 2.

This implies that, ek(v) ≤ k + 2.
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We now prove equality. Suppose towards contradiction that ek(v) < k + 2. Let

di ∈ D∩N(v) and consider the vertex set D∗ = (D \ {di}) ∪ {v}. Since ek(v) < k+2

we have that d(D∗) < k + 2. Then, joining the edge vdi to a Steiner tree for D∗

creates a subgraph spanning D with less than k + 3 edges. We know such an edge

exists since di ∈ N(v). This contradicts Claim 3.9. Hence, ek(v) = k + 2.

With Claims 3.9, 3.10, and 3.11 in hand, we can prove the following proposition.

Proposition 3.12. For k ≥ 5 the graph Gk satisfies sdiamk(Gk) = k + 3 and

sradk(Gk) = k + 1.

Proof. Let v ∈ A∪B. By Claims 3.10 and 3.11, we have that that ek(r) = k+ 1 and

ek(v) = k + 2, respectively. Now the only vertex set of size k which does not contain

elements of A ∪B ∪ {r} is D. By Claim 3.9, we have that d(D) = k + 3. Hence,

sradk(G) = ek(r) = k + 1 and sdiamk(G) = ek(d1) = k + 3.

3.6 Examining a previous proof

We now identify an error in the proof provided in [32] that for any connected graph G,

sdiam4(G) ≤ 10
7 srad4(G). Given such a connected graph G, let D = {v1, v2, v3, v4},

v0, Di and Ti be defined as in Definition 3.5. For each 1 ≤ i ≤ k, let si be the vertex

of Ti with degree at least 3 in Ti closest to v0 in Ti. For each 1 ≤ i ≤ 4, we introduce

a labeling of the leaves of Ti. For each such i, label u(i)
3 be such that si us the nearest

neighbor (in T1) of degree 3 to u(i)
3 as well. Next, let ti be the vertex of degree at

least 3 in T1 which is closes to u(i)
2 and u(i)

1 (in T1). It is possible that si = ti. Then,

for 1 ≤ i ≤ 4, each tree Ti is of the form illustrated in Figure 3.10.
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We then define the following distances as illustrated in Figure 3.10.

ai := dT1(u1, t) bi := dT1(u2, t)

ci := dT1(u3, s) di := dT1(s, t).

The authors of [32] define T ′′i to be the subtree of Ti obtained by deleting the vertices

in the u(i)
3 −si path except for s. Figure 3.10 illustrates the difference between Ti and

T ′′i .

The tree Ti The tree T ′′i

v0 u
(i)
1

u
(i)
2u

(i)
3

si ti

vi

`i

ci bi

ai
di

v0 u
(i)
1

u
(i)
2u

(i)
3

si ti

vi

`i

bi

ai
di

Figure 3.10 The trees Ti and T ′′i . Vertices of degree 2 are omitted.

Suppose that Tu1 and Tu2 are minimal subtrees spanning (D \ {u1}) ∪ {v0} and

(D \ {u2}) ∪ {v0}, respectively. The authors make the following claims:

Claim 3.13. [32] In reference to Figure 3.10,

‖T ′′1 ‖+ a4 + b4 ≥ sdiam4(G)

‖T ′′1 ‖+ a4 + d4 + `4 ≥ sdiam4(G)

‖T ′′3 ‖+ b4 + d4 + `4 ≥ sdiam4(G).

We now show that the first of these claims can be violated. Consider the graph

H4 given in Figure 3.11. Constructed in [32], the graph H4 satisfies sdiam4(H4) =
10
7 sradk(G4). Let D = {v1, v2, v3, v4}. It is easy to verify that d(D) = 10 and

v0 ∈ C4(G4) with e4(v0) = 7. Consider the sets D1 = {v0, v2, v3, v4} and D4 =

{v0, v1, v2, v3}. Let T1 and T4 be minimal spanning trees for D1 and D4, respectively.

These trees are illustrated in Figure 3.12.
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The graph H4

v0

v1

v2

v3

v4

Figure 3.11 The graph H4. All vertices
are shown.

The subgraph T1 The subgraph T4

v0

s

v1

v2

v3

v4

v0

v1

v2

v3

v4

The graph T ′′1 The graph H ′4

v0

s

v1

v2

v3

v4

v0

v1

v2

v3

v4

Figure 3.12 The pertinent subgraphs of H4. All vertices are
shown.

Let H ′4 be the graph formed by adjoining to T ′′1 the v1− v2 path in T4. This path

corresponds to the u(4)
1 − u

(4)
2 path of length a4 + b4 in Figure 3.10. These graphs are

illustrated in Figure 3.12. It is easy to verify that ‖H ′4‖ = 9, contradicting Claim

3.13. The remaining statements of Claim 3.13 can similarly be contradicted by the

graph H4.
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Chapter 4

Steiner Distance of Large Sets in the

Hypercube

4.1 Introduction

In addition to bounds of the k-Steiner diameter upon other properties of a graph,

several results and bounds have been produced for specific graph classes. For the

general connected graph, very general sharp bounds are known.

Theorem 4.1. [12] Suppose that k, n are integers with 2 ≤ k ≤ n and G is a

connected graph of order n. Then,

k − 1 ≤ sdiamk(G) ≤ n− 1.

Restricting to maximally planar graphs, Ali, Mukwembi, and Dankelmann [5]

showed the following bounds for Steiner k-diameter of 3, 4, and 5-connected maxi-

mally planar graphs.

Theorem 4.2. [5] If G is a connected graph of order n and 2 ≤ j ≤ n is an integer,

then the following hold.

1. If G is a maximally planar 3-connected graph, then sdiamk(G) ≤ n
3 + 8n

3 − 5.

2. If G is a maximally planar 4-connected graph, then sdiamk(G) ≤ n
4 + 19n

4 − 9.

3. If G is a maximally planar 5-connected graph, then sdiamk(G) ≤ n
5 + 14n

5 − 9.

Furthermore, each of these bounds are asymptotically tight.
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We now turn our attention to the n-dimensional hypercube, Qn, which we refer

to as the n-cube. We identify each vertex with a binary string of length n. Here,

two vertices are adjacent if their corresponding binary strings differ in exactly one

position. We refer to the all zero vertex by 0.

In regards to the n-cube, Tao Jiang, Zevi Miller, and Dan Pritikin [37] studied

how large the Steiner distance of k vertices can be in the n-cube as n → ∞, while

Zevi Miller and Dan Pritikin [44] gave near tight bounds for the Steiner distance of a

layer, i.e. vertices with the same number of 1’s, in the n-dimensional hypercube Qn

as n→∞. In general, finding Steiner trees in the n-cube is computationally difficult.

In fact, Foulds and Graham showed in 1982 that the problem is NP-hard [24].

In this chapter we give natural upper and lower bounds for the Steiner distance

of a large vertex set in the hypercube. It turns out that even the second order term

in this estimate is close to tight. With these bounds, we determine sdiamk(Qn)

asymptotically for large k.

4.2 Upper Bound

For the upper bound, we utilize connected dominating sets of Qn. A set S ⊂ V (Qn)

is a dominating set of Qn if every vertex of Qn is either an element of S or has a

neighbor in S. The minimum size of all dominating sets is called the domination

number of Qn and is denoted γ(Qn). The connected domination number, denoted by

γc(Qn), is the minimum size of all connected dominating sets.

If n = 2m− 1 or n = 2m, γ(Qn) can be determined using coding theory (see [30]).

In 1988, Kabatyanskii and Panchenko [38] showed γ(Qn)
2n/n

∼ 1. Griggs [29] utilizes

this result to show that γc(Qn)
2n/n

∼ 1 in an upcoming paper. We use this last result to

develop an upper bound for the Steiner diameter of subsets of V (Qn). With results

in hand, we are prepared to prove the following lemma.
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Lemma 4.3. Suppose that S ⊂ V (Qn). Then,

d(S) ≤ |S|+ 2n
n

(1 + o(1)).

Proof. Begin with a minimal connected dominating set of Qn. Simply connect each

of the elements of S to this connected dominating set. The resulting subgraph spans

S and contains at most |S|+ γc(Qn)− 1 edges. Using [29], we then have that d(S) ≤

|S|+ 2n

n
(1 + o(1)).

4.3 Lower Bound

For the lower bound, we make use of the identification of each vertex of the n-cube

with a binary string of length n. A vertex in the hypercube is even if its corresponding

binary string has an even number of 1’s. In the same way a vertex is odd if its

corresponding binary string has an odd number of 1’s. Figure 4.1 illustrates n-cubes

with 1 ≤ n ≤ 3. Denote the set of even vertices of a given n-cube by E and the set

of odd vertices by Ē. The sets E and Ē are are illustrated in Figures 4.2 and 4.3,

respectively.

0 1 00 10

01 11

000 100

010
110

001
101

011 111

Figure 4.1 The n-cubes for 1 ≤ n ≤ 3

Lemma 4.4. Suppose that S ⊆ V (Qn), be a subset of even vertices i.e. each element

of S contains an even number of 1’s. Then

d(S) ≥ |S|+ |S|
2

n2n − 1.
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0 00

11

000

110

101

011

Figure 4.2 The even vertices of the n-cube where
1 ≤ n ≤ 3

1 10

01

100

010

001

111

Figure 4.3 The odd vertices of the n-cube where
1 ≤ n ≤ 3

Proof. Suppose that S ⊆ E, is a subset of the even vertices of Qn. Let S̄ be obtained

from S by switching the value of first entry of vertex in S. We have that d(S) = d(S̄)

by symmetry. Suppose that T = (V (T ), E(T )) and T̄ = (V (T̄ ), E(T̄ )) are Steiner

trees of S and S̄, respectively. Naively, we have that d(S∪S̄) ≥ 2|S|−1. Furthermore,

connecting T and T̄ yields a subgraph of Qn spanning S ∪ S̄. Hence, d(S ∪ S̄) ≤

|E(T ) ∪ E(T̄ )|+ 1. Then,

2|S| − 1 ≤ |E(T ) ∪ E(T̄ )|+ 1

= |E(T )|+ |E(T̄ )| − |E(T ) ∩ E(T̄ )|+ 1

= 2d(S)− |E(T ) ∩ E(T̄ )|+ 1,
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which implies that

2|S| − 2 ≤ 2d(S)− |E(T ∩ T̄ )|. (4.1)

Let Γ = 〈α, βi,j〉 be the subgroup of automorphisms of Qn generated by the following

automorphisms

α :v0v1 · · · vn−1 7→ v1 · · · vn−1v0

βi,j :v0v1 · · · vi · · · vj · · · vn−1 7→ v0v1 · · · v̄i · · · v̄j · · · vn−1.

Here, α cycles through a binary string v while each βi,j “flips” i’th and j’th bits of a

binary string v.

We now show that for any two edges e1, e2 ∈ E(Qn), there exists a unique γ ∈ Γ

such that γ(e2) = e1. Suppose that e1 = ab and e2 = uv where a and u are even

vertices while b and v are odd vertices. Without loss of generality, we may assume

that a = 0, the vertex of all zeros. This implies that the string b contains a single 1.

We shall first prove existence.

First, using a composition of automorphisms of the form bi,j we may map uv to

0v̂. Using some power of the automorphism α, we may then map the edge 0v̂ to the

edge 0b = e1. Hence, there exists γ ∈ Γ such that γ(e2) = e1.

To show that this map is unique, we provide a combinatorial argument. Enu-

merate the images of a binary string v = v0v1 · · · vn−1 under automorphisms in Γ. If

γ ∈ Γ, then

γ(v) = uiui+1 · · ·unu1 · · ·ui−1,

where ui ∈ {vi, v̄i} for each 1 ≤ i ≤ n. Now there are n choices for i. Furthermore,

γ(v) contains an even number of “flipped” bits. So there are 2n−1 choices for the

number of 1’s. So there are n2n−1 possible images of v under a γ ∈ Γ. Since there are

n2n−1 edges in the n-cube, this implies that |γ| ≥ n2n−1. Hence, any automorphism

γ ∈ Γ mapping e1 to e2 must be unique.
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We now consider the experiment of selecting elements λ1, λ2 ∈ Γ with uniform

probability and independently applying them to T and T̄ , respectively. Since for any

two edges f, g ∈ E(Qn) there there is a unique automorphism mapping an f to g, we

have that for any two automorphisms λ1, λ2 ∈ Γ, it holds that

P [f ∈ λ1(T )] = P [f ∈ λ2(T )] = |E(T )|
n2n−1 .

We now consider the random variable X = |E(λ1(T ) ∩ λ2(T̄ ))|. For the expected

value of X, E(X), we have that

max
λ1,λ2
{|E(λ1(T ) ∩ λ2(T̄ ))|} ≥ E(X).

We observe that

E(X) =
∑

f∈E(Qn)
P [f ∈ λ1(T ) ∧ f ∈ λ2(T̄ )]

=
∑

f∈E(Qn)

|E(T )|
n2n−1 ·

|E(T̄ )|
n2n−1

= |E(T )|2
n2n−1

= d(S)2

n2n−1 ,

which implies max
λ1,λ2
{e(λ1(T ) ∩ λ2(T̄ ))} ≥ d(S)2

n2n−1 . Applying this to equation (4.1), we

see that

2d(S)− d(S)2

n2n−1 ≥ 2|S| − 2.

Now, d(S) = |S|+ x for some x ≥ 0. So,

2(|S|+ x)− (|S|+ x)2

n2n−1 ≥ 2|S| − 2

2|S|+ 2x− |S|
2 + 2|S|x+ x2

n2n−1 ≥ 2|S| − 2

2x− 2|S|x
n2n−1 + 2|S| − |S|

2 + x2

n2n−1 ≥ 2|S| − 2

2x(1− |S|
n2n−1 ) ≥ |S|

2 + x2

n2n−1 − 2

x ≥ |S|
2

n2n − 1.

Hence, d(S) ≥ |S|+ |S|2
n2n − 1.
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With these preliminary results in hand, we can determine the asymptotic growth

of sdiamk(Qn) for large k.

Theorem 4.5. If k = k(n), then

1. If k = Ω(2n), then sdiamk(Qn) = k +O(2n/n), and

2. If lim
n→∞

k
2n/n

=∞, then sdiamk(Qn) ∼ k.

Proof. If k ≤ 2n−1, let S ⊂ V (Qn) be a subset of the even vertices of size k. If

k > 2n−1, let S contain all even vertices and choose the remaining odd vertices

randomly. Applying the bounds determined in Lemmas 4.3 and 4.4, we see that

k + k2

n2n − 1 ≤ d(S) ≤ sdiamk(Qn) ≤ k + 2n
n

(1 + o(1)).

This immediately gives that sdiamk(Qn) ≥ k− 1 +O(2n/n) and sdiamk(Qn) = Ω(k).

If lim
n→∞

k
2n/n

=∞, then we have that 2n/n = o(k), so sdiam(Qn) = k(1 + o(1)), giving

sdiamk(Qn) ∼ k.

4.4 Directions for future research

The bounds produced in this section agree only in the first two terms. Future work

could be applied to two fronts: First, one could attempt to improve these bounds to

agree in more than two terms. Second, one could also develop strategies to create

bounds for smaller values of k. Given the computational difficulty of finding Steiner

trees in the n-cube, it is possible that exact bounds will not be found. However, there

exist many graph classes for which bounds on the Steiner k-diameter do not exist for

an arbitrary k. A future area of study is to develop bounds for an arbitrary k in

other graph classes. Still more, reducing to specific values of k, one may be able to

produce tighter bounds for both the n-cube and other graph classes.
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Chapter 5

A Midrange Crossing Constant for Certain

Graph Classes

5.1 Introduction

Given an undirected graph G = (V,E), a drawing of G is a representation of G

in the plane such that every edge uv ∈ E is represented by a simple continuous

curve between the points corresponding to u and v, which does not pass through any

point representing a vertex of G. For simplicity, we assume that no two curves share

infinitely many points, no two curves are tangent to each other, and no three curves

pass through the same point. The crossing number cr(G) is defined as the minimum

number of crossing points in a drawing of G. It is well-known [55] that in any drawing

that realizes the crossing number, any pair of edges crosses in at most one point, and

a pair of crossing edges do have 4 distinct endvertices. Computing cr(G) is an NP-

hard problem [25]. Motivated by applications to VLSI design, Leighton [41], and

independently Ajtai et al. [2], gave the following general lower bound on the crossing

number of a graph, which is better known as the crossing lemma.

Theorem 5.1 ([41, 2]). For any graph G with n vertices and e > 4n edges, we have

cr(G) ≥ 1
64
e3

n2 .

Further improvements on the constant are made by Pach and Tóth [49] and Pach et

al [50]. The current best bound is due to Ackerman [1], who showed that cr(G) ≥ e3

29n2
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when e > 7n. Székely [56] used the crossing lemma to give a simple proof of the

Szemerédi–Trotter theorem on the number of point-line incidences [57].

For a positive integer n and real number e ≥ 0, let κ(n, e) be the minimum crossing

number taken over all graphs with n vertices and at least e edges. The crossing lemma

implies that for e > 4n, κ(n, e)n2

e3 is bounded below by a positive constant. Pach,

Spencer and Tóth [48] showed that for n� e� n2 (i.e. in the midrange),

lim
n→∞

κ(n, e)n
2

e3 = C > 0,

which proves a conjecture of Erdős and Guy [22], made a decade before the crossing

lemma. Here, we use the notation f(n)� g(n) to mean that limn→∞ f(n)/g(n) = 0.

The constant C above is also called the midrange crossing constant.

For any positive integer k ≥ 1, the k-planar crossing number crk(G) of G is

defined as the minimum of ∑k
i=1 cr(Gi), where the minimum is taken over all graphs

G1, G2, . . . , Gk such that ⋃ki=1 E(Gi) = E(G). Pach et al. [51] showed a general bound

on the ratio of the k-planar crossing number to the (ordinary) crossing number of a

graph. They defined

αk = sup crk(G)
cr(G) ,

where the supremum is taken over all nonplanar graphs G. Pach et al. [51] showed

that for every positive integer k,

1
k2 ≤ αk ≤

2
k2 −

1
k3 .

For k = 2, this gives the same upper bound of 3/8 as in [14]. Very recently, Asplund

et al. [7] closed the gap and showed that

αk = 1
k2 (1 + o(1)) as k →∞.

The lower bound that αk ≥ 1
k2 in Pach et al. [51] depends on the existence of the

midrange crossing number C > 0, though not on its value.
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For the family of bipartite graphs, define analogously the constant βk = supcrk(G)
cr(G) ,

where the supremum is taken over all non-planar bipartite graphs G. Asplund et al.

[7] showed that for all positive integers k,

βk = 1
k2 .

As before, the lower bound β ≥ 1
k2 , depends on the existence of the midrange

crossing constant CB > 0 for the family of bipartite graphs. This motivated us to

extend the proof of Pach, Spencer and Tóth [48] to show the existence of the midrange

crossing constant CB for certain graph classes B, which may or not be equal to the

midrange crossing constant C for all graphs. As such, the proofs in this chapter

closely follow those of the original paper. The current best known bounds for C are

0.034 ≤ C ≤ 0.09; see [49, 50, 1], while Angelini, Bekos, Kaufmann, Pfister and

Ueckerdt [6] showed that the midrange crossing constant for the class of bipartite

graphs is at least 16/289 > 0.055.

For a class of graphs B, define κB(n, e) to be the minimum crossing number of a

graph in B with n vertices and at least e edges. The following natural questions arise:

Question 5.2. For a given class B, does there exist a constant CB such that

lim
n→∞

κB(n, e)n2

e3 = CB in the midrange?

Question 5.3. Are there two classes of graphs B and D such that CB and CD exist

with CB 6= CD?

Towards answering these questions, we define the following class of graphs.

Definition 5.4. A family of graphs B is a PST-class (abbreviating Pach, Spencer

and Tóth) if it satisfies the following properties:

1. B contains a graph with at least one edge;

2. B is closed under taking subgraphs;
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3. B is closed under taking the union of disjoint copies of graphs in B;

4. B is closed under vertex cloning, i.e. B is closed under replacing a vertex v with

vertices v1, . . . , vm such that N(vi) = N(v) for all 1 ≤ i ≤ m.

v

v1

v2

v3

Figure 5.1 The vertex v is “cloned” into
the vertices v1, v2, and v3.

Note that properties (2) and (4) imply that a PST-class B is also closed under

vertex-splitting i.e. B is closed under replacing a vertex v with vertices v1, v2, . . . , vm

such that N(v) = ⋃m
i=1 N(vi) and N(vi) ∩N(vj) = ∅ for 1 ≤ i < j ≤ m. Figures 5.1

and 5.2 illustrate the cloning and splitting of a vertex, respectively.

v

v1

v2

v3

Figure 5.2 The vertex v is “split” into
the vertices v1, v2, and v3.
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PST classes form a lattice with respect to the subclass relation, with the set of

bipartite graphs being the minimum and the set of all graphs being a maximum

element of the class:

Theorem 5.5. Any PST-class contains the family of bipartite graphs as a subclass,

and the intersection of two PST-classes is also a PST class. Moreover, the following

are PST classes:

1. `-colorable graphs;

2. Kt-free graphs (t ≥ 3);

3. graphs without odd cycles shorter than g.

Careful examination of the proof presented in [48] yields that PST-classes have

midrange crossing constants. In this chapter, we will prove the following result.

Theorem 5.6. If B is a PST-class, then CB exists, i.e. there is a constant CB > 0

such that in the midrange

lim
n→∞

κB(n, e)n
2

e3 = CB.

For Question 5.3, the answer remains elusive. By Theorem 5.5, if we restrict our

attention to PST-classes, an affirmative answer implies that the midrange crossing

constant for the class of bipartite graphs is bigger than the midrange crossing constant

for all graphs, which we tend to believe.

Pach et al. [51] pointed out that the arguments in [48] can be repeated for rec-

tilinear drawings of graphs and rectilinear crossing numbers; therefore a midrange

rectilinear crossing constant exists, which is not necessarily the same as the midrange

crossing constant. Extending this argument, Theorems 5.6 and 5.5 have their recti-

linear versions, with possibly different constants.
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The proof of Theorem 5.6 closely follows the original proof for the existence of the

midrange crossing constant presented in [48], with emphasis added on the required

properties of PST classes of graphs.

5.2 Proof of Theorem 5.5

If B is a PST-class, properties (1) and (2) imply that K2 ∈ B. Property (4) then gives

that Kn,m ∈ B for all n,m, and property (2) then implies that all bipartite graphs

are elements of B. Let B1,B2 be PST-classes, then their intersection must contain

all bipartite graphs, and therefore a graph, which is not edgeless. If G∗ is a graph

obtained from a graph in G ∈ B1 ∩ B2 by taking subgraphs, or vertex cloning, then,

as B1 and B2 are closed under these operations, G∗ ∈ B1 ∩ B2. As B1,B2 are closed

under taking disjoint unions, so is B1 ∩ B2. Hence, B1 ∩ B2 is a PST-class.

K2 is in the classes of `-colorable graphs, Kt-free graphs for t ≥ 3, and graphs

without odd cycles shorter then g, so these three classes satisfy property (1). It is

obvious that taking a subgraph does not increase the chromatic number, the clique

number or the length of the shortest odd cycle. The chromatic number, clique number

and length of the shortest odd cycle are the minimum of these quantities respectively

over the components of a graph, so these classes are closed under property (3).

Let G∗ be obtained from G by cloning v into v1, . . . , vm. Given a good `-coloring

of G, we can obtain a good `-color of G∗ by assigning the color of v to all vi; any

complete subgraph ofG∗ can contain at most one vi and thus correspond to a complete

subgraph of the same order in G. Any cycle in G∗ that contains at most one of the

vi’s corresponds to a cycle of the same length in G. Any cycle in G∗ that contains

more than one vi corresponds to a closed walk in G that visits all vertices (of the

walk) but v at most once, so it corresponds to the union of cycles in G; this means

that for any odd cycle in G∗ we can find an odd cycle in G that is not longer. This

shows that these classes are all PST-classes.
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5.3 Proof of Theorem 5.6

Throughout this section, B denotes a PST-class. We first prove a lemma that bounds

the minimum number of crossings of a graph in B with n vertices and linearly many

edges.

Lemma 5.7. For any a ≥ 4, and n ≥ 2a+ 1,

a3

100 ≤
κB(n, an)

n
≤ 8a3.

Proof. It is known (see [49]) that for any a ≥ 4, a3n
100 ≤ κ(n, an) ≤ a3n. Since

κ(n, an) ≤ κB(n, an) for any a > 0, it follows that a3n
100 ≤ κB(n, an).

Since κ(n, 2an) ≤ 8a3n, we know that there exists a graph G on n vertices and

d2ane edges such that cr(G) ≤ 8a3n. As it is well known, every graph has a bipartite

subgraph with at least half as many edges. Hence there exists a bipartite subgraph

H of G, such that H has at least an edges and cr(H) ≤ cr(G) ≤ 8a3n. Since B is

closed under taking subgraphs, H ∈ B. Thus, for any a ≥ 4, we have that

a3

100 ≤
κB(n, an)

n
≤ cr(H)

n
≤ 8a3.

With this lemma in hand, we now follow the proof presented in [48] restricting

ourselves to the graph class PST. To begin, we prove the following lemma.

Lemma 5.8. We have the following:

(a) For any a > 0, the limit

γB[a] = lim
n→∞

κB(n, na)
n

exists and is finite.

(b) γB[a] is a convex function.
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(c) For any a ≥ 4, 1 > δ > 0,

γB[a]− γB[a(1− δ)] ≤ γB[a(1 + δ)]− γB[a] ≤ 104δγB[a].

(d) γB[a] is continuous.

Proof. LetG1, G2 ∈ B, and letG3 be their disjoint union. As cr(G3) = cr(G1)+cr(G2)

and B is closed under taking disjoint union,

κB(n1 + n2, e1 + e2) ≤ κB(n1, e1) + κB(n2, e2).

This implies that fa(n) := κB(n, na) is subadditive. Hence, by Fekete’s Lemma on

subadditive sequences (see [53] Ex. 98), the limit

γB[a] = lim
n→∞

κB(n, na)
n

exists and is finite for every a > 0. This concludes the proof of part (a).

For part (b), let 0 < α < 1. Suppose a, b > 0 with n such that αn is also an

integer. Then,

κB(n, (αa+ (1− α)b)n) = κB(αn+ (1− α)n, (αa+ (1− α)b)n)

≤ κB(αn, αan) + κB((1− α)n, (1− α)bn).

This implies that

γB[αa+ (1− α)b] = lim
n→∞

κB(n, (αa+ (1− α)b)n)
n

≤ lim
n→∞,αn∈Z

κB(αn, αan)
n

+ lim
n→∞,αn∈Z

κB((1− α)n, (1− α)bn)
n

.

Now, for any rational number α, let m = αn and q = (1− α)n = n−m. Then,

lim
n→∞,αn∈Z

κB(αn, αan)
n

+ lim
n→∞,αn∈Z

κB((1− α)n, (1− α)bn)
n

= lim
m→∞

κB(m, am)
(m/α) + lim

q→∞

κB(q, bq)
q/(1− α)

= α lim
m→∞

κB(m, am)
m

+ (1− α) lim
q→∞

κB(q, bq)
q

= αγB[a] + (1− α)γB[b].
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Hence, for any rational α

γB[αa+ (1− α)b] ≤ αγB[a] + (1− α)γB[b].

We now relax the restriction that α is rational. Suppose that a ≤ b and let

{αn}∞n=0 be a monotone increasing sequence of rational numbers converging to α. For

any n ≥ 0,

γB[αa+ (1− α)b] ≤ γB[αna+ (1− αn)b]

≤ αnγB[a] + (1− αn)γB[b],

which converges to αγB[a] + (1− α)γB[b]. So,

γB[αa+ (1− α)b] ≤ αγB[a] + (1− α)γB[b]

for all real numbers 0 < α < 1. That is, γB is convex, so part (b) is true. By

convexity, we then have

γB[a]− γB[a(1− δ)] ≤ γB[a(1 + δ)]− γB[a],

which is the first inequality in part (c). For the second inequality, by Lemma 5.7, we

obtain the inequality
a3

100 ≤ γB(a) ≤ 8a3.

Then, for a ≥ 4 and 0 < δ < 1,

γB[(1 + δ)a] = γB[(1− δ)a+ 2δa]

≤ (1− δ)γB[a] + δγB[2a]

≤ γB[a] + δγB[2a].

Hence,

γB[(1 + δ)a]− γB[a] ≤ δγB[2a] ≤ δ · 64a3 ≤ δ · 6400γB[a] < 104δ · γB[a],

which finishes the proof of part (c) and implies part (d).
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We now set

DB := lim sup
a→∞

γB[a]
a3 .

Note that by Lemma 5.7 we have 0.01 ≤ DB ≤ 8. We will follow the proof of

Theorem 5.6 presented in [48] by showing two lemmas that imply that DB is the

midrange crossing constant CB.

Lemma 5.9. For any 0 < ε < 0.1, there exists N = N(ε) such that κB(n, e) >

(1− ε) e3

n2DB, whenever min{n, e/n, n2/e} > N .

Proof. Let A > 2·109

ε3
be a rational number satisfying

γB[A]
A3 > DB

(
1− ε

10

)
.

Such a number exists by the definition of DB. Let N = N(ε) ≥ A such that if n > N ,

e = nA′, and |A− A′| ≤ Aε, then

κB(n, e) > γB[A′]
(

1− ε

10

)
n. (5.1)

Such an N certainly exists, as this is equivalent to

κB(n, e)
n

> lim
k→∞

κB(k,A′k)
k

(
1− ε

10

)
,

for all n ≥ N .

Let n and e be fixed integers so that min{n, e/n, n2/e} > N and let G = (V,E)

be a graph with |V | = n vertices and |E| = e edges, which can be drawn in the plane

with κB(n, e) crossings. Let U be a random independently chosen subset of V with

P [u ∈ U ] = p, where

p = An

e
>

2 · 109n

e · ε3 .

Let ν = |U | and let η and ξ be the number of edges and crossings (in the drawing)

of the graph induced by U . We have that ν has expected value np and variance

p(1− p)n ≤ pn. By Chebyshev’s inequality, we have that

Pr
[
|ν − pn| > ε

104pn
]
≤ 108pn(1− p)

(pn)2ε2 ≤ 108

pnε2 ≤
ε3108e

2 · 109n2ε2 <
ε

10 .
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We note that η = ∑
u,v∈G Iuv where Iuv is the indicator function for the event u, v ∈ U .

Then, E[η] = ep2. Since Iuv is an indicator function, we have that

E[Iuv] = p2

Var[Iuv] = p2(1− p2)

Cov[Iuv, Iwx] = Pr[(u, v ∈ U) ∩ (w, x ∈ U)]− Pr(u, v ∈ U) · Pr(w, x ∈ U).

It is immediate that Var(Iuv) ≤ E(Iuv) and that Cov[Iuv, Iwx] = 0 if {u, v}∩{w, x} =

∅. Hence,

Var[η] =
∑
uv∈E

Var[Iuv] +
∑

uv,uw∈E
Cov[Iuv, Iuw],

and ∑
uv∈E

Var[Iuv] ≤
∑
uv∈E

E[Iuv] = E[η] = ep2

Using the bound Cov[Iuv, Iuw] ≤ E[IuvIuw] = p3, we see that

Var[η] ≤ p2e+ p3 ∑
v∈V

(
deg(v)

2

)
.

Since deg(v) < n and ∑v∈V deg(v) = 2e, we have that

∑
v∈V

(
deg(v)

2

)
≤ 1

2
∑
v∈V

d2(v) < 1
2
∑
v∈V

deg(v)n = en.

Hence, using that pn = An2

e
> AN > 1,

Var[η] ≤ p2e+ p3en ≤ 2p3en.

Applying the Chebyshev Inequality, and using that pe = An > 2·109

ε3
, we see that

Pr
[
|η − p2e| > ε

104p
2e
]
≤ 2p3en

ε2

108p4e2
= 2n

ε2

108pe
<

2
ε2

108
2·109

ε3

= ε

10 .

This implies that with probability at least 1− ε
5 ,

pn
(

1− ε

104

)
< ν < pn

(
1 + ε

104

)
, and p2e

(
1− ε

104

)
< η < p2e

(
1 + ε

104

)
.

Hence, with probability at least 1− ε
5 ,

p2e

pn
·

1− ε
104

1 + ε
104

<
η

ν
<
p2e

pn
·

1 + ε
104

1− ε
104
,
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which implies that

A
(

1− 3ε
104

)
<
η

ν
< A

(
1 + 3ε

104

)
.

Now we set A′ = η
ν
. The subgraph induced by U has ν vertices and A′ν = η edges.

So, with probability at least 1− ε
5 , equation (5.1) implies that the number of crossings

in this induced subgraph is at least

νγB[A′]
(

1− ε

10

)
≥ pn

(
1− ε

10

)
γB[A′]

(
1− ε

10

)
.

Then, the expected number of crossings in the subgraph induced by U in G is at least

E[ξ] ≥
(

1− ε

5

)
pn
(

1− ε

10

)
γB[A′]

(
1− ε

10

)
≥
(

1− ε

5

)
pn
(

1− ε

10

)
γB[A]

(
1− 3ε

10

)(
1− ε

10

)
>
(

1− ε

5

)
pn
(

1− ε

10

)
DBA

3
(

1− 3ε
10

)(
1− ε

10

)(
1− ε

10

)
≥ (1− ε)DBA3pn.

However, since each crossing lies in G[U ] with probability p4, we know that

E[ξ] = p4κB(n, e).

Hence,

κB(n, e) ≥ (1− ε)pnDBA
3

p4 = e3

n2 (1− ε)DB.

Lemma 5.10. For any 0 < ε < 0.1, there exists M = M(ε) such that κB(n, e) <

(1 + ε) e3

n2DB, whenever min{n, e/n, n2/e} > M .

Proof. Let A > 108/ε2 be a rational number such that A3/2 is an integer satisfying

DB

(
1− ε

10

)
<
γB[A]
A3 < DB

(
1 + ε

10

)
.

Let M1 = M1(ε) ≥ A such that, if n > M1 and e = nA, then

DBA
3n
(

1− ε

5

)
< κB(n, e) < DBA

3n
(

1 + ε

5

)
.
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Let G1 be a graph in B with n1 > M1 vertices e1 = An1 edges, and suppose that G1

is drawn in the plane with κB(n1, e1) crossings, where

DBA
3n1

(
1− ε

5

)
< κB(n1, e1) < DBA

3n1

(
1 + ε

5

)
.

For each vertex v ∈ G1 do the following. Let deg(v) = rvA
3/2 + sv where rv, sv are

integers and 0 ≤ sv < A3/2. We split v into rv + 1 vertices, one with degree sv and rv

with degree A3/2. (Note that this implies that we do nothing for vertices with rv = 0,

i.e. when the degree of the vertex is smaller than A3/2.) Drawing these vertices very

close to each other, we may do this without creating any additional crossings. This

creates a drawing of a new graph G2 that has n2 vertices, e1 edges and maximum

degree at most A3/2, and the crossing number of this drawing is κB(n1, e1). Since B

is closed under vertex splitting, G2 ∈ B. We have that

2An1 = 2e1 =
∑
v∈G1

deg(v) =
∑
v∈V

(rvA3/2 + sv),

which implies that ∑
v∈V

rv ≤ 2n1√
A
. Hence,

n1 ≤ n2 ≤ n1 + 2n1√
A
< n1

(
1 + ε

10

)
.

Now, fix integers n and e such that min{n, e/n, n2/e} > M(ε) = 10M1
ε
. Let

L = e/n

e1/n2
and K = n2/e

n2
2/e1

,

so that n = KLn2 and e = KL2e1. Let

L̃ =
⌊
L
(

1 + ε

10

)⌋
and K̃ =

⌊
K
(

1− ε

10

)⌋
,

and let

ñ = K̃L̃n2 and ẽ = K̃L̃2e1.

Then,

ñ < n and e < ẽ.
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which implies that κB(n, e) < κB(ñ, ẽ). Clone each vertex of G2 into L̃ very close

vertices, and substitute each edge of G2 with the corresponding L̃2 edges, each very

close to the original, obtaining a drawing of a new graph G3 with n2L̃ vertices and

e1L̃
2 edges. As G3 is obtained from G2 by cloning each vertex, G3 ∈ B. Then make

K̃ copies of this drawing, each separated from the others. We then have a graph G̃

on ñ vertices and ẽ edges drawn in the plane. As G̃ is a disjoint union of K̃ copies of

G3, G̃ ∈ B. We will estimate the number of crossings X in this drawing of G̃.

A crossing in the original drawing of G2 corresponds to K̃L̃4 crossings in the

present drawing of G̃. For any two edges of G2 with a common endpoint, the edges

arising from them have at most K̃L̃4 crossings with each other. So,

X ≤ K̃L̃4

κB(n1, e1) +
∑

v∈V (G2)

(
deg(v)

2

) .
However, ∑

v∈V (G2)
dG2(v) = 2e1 = 2An1

and dG2(v) ≤ A3/2, so

∑
v∈V (G2)

(
dG2(v)

2

)
<

∑
v∈V (G2)

2An1 · A3/2

2 ≤ A5/2n1 <
κB(n1, e1)

A1/2DB
(
1− ε

5

) ≤ ε

10κB(n1, e1).

Therefore,

κB(ñ, ẽ) ≤ X < K̃L̃4κB(n1, e1)
(

1 + ε

10

)
Putting all these inequality together, we have

κB(n, e) < κB(ñ, ẽ) < K̃L̃4κB(n1, e1)
(

1 + ε

10

)
< K̃L̃4DBA

3n1

(
1 + ε

5

)(
1 + ε

10

)
= K̃L̃4DB

e3
1
n2

1

(
1 + ε

5

)(
1 + ε

10

)
< KL4DB

e3
1
n2

2

(
1 + ε

10

)4 (
1 + ε

5

)(
1 + ε

10

)

= e3

n2DB

(
1 + ε

10

)5 (
1 + ε

5

)
< (1 + ε) e

3

n2DB.

Putting Lemmas 5.9 and 5.10 together and letting ε run to 0, we have have proven

Theorem 5.6.
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5.4 Directions for future research

With Theorem 5.6 in hand, we have a candidate with which to explore question

5.3. Since we do not yet know the true value of the midrange crossing constant of

all graphs, an immediate strategy is to determine a lower bound for the midrange

crossing constant of a PST class of graphs and compare with the standard midrange

crossing constant. Since the class of bipartite graphs is the minimal element in the

lattice of PST classes of graphs, the largest midrange crossing constant must be for

the class of bipartite graphs. In the same way, the class of all graphs is maximal in

the same lattice and must contain the minimal midrange crossing constant. If two

PST classes of graphs have different midrange crossing constants, these classes are

the obvious candidates.

Beyond this, a further question is to determine which conditions of those listed in

Definition 5.4 are necessary to ensure that a class of graphs has a midrange crossing

constant. Our proof uses all conditions that determine a PST class. A further

question is whether a new proof can be found that eliminates some of these conditions,

finding more graph classes that have midrange crossing constants.

57



www.manaraa.com

Bibliography

[1] E. Ackerman. “On topological graphs with at most four crossings per edge”. In:

abs/1712.09855 (2019). arXiv: 1509.01932. url: https://arxiv.org/abs/

1509.01932.

[2] M. Ajtai et al. “Crossing-free subgraphs”. In: Theory and practice of combina-

torics. Vol. 60. North-Holland Math. Stud. North-Holland, Amsterdam, 1982,

pp. 9–12.

[3] Patrick Ali. “The Steiner diameter of a graph with prescribed girth”. In: Dis-

crete Math. 313.12 (2013), pp. 1322–1326. issn: 0012-365X.

[4] Patrick Ali, Peter Dankelmann, and Simon Mukwembi. “Upper bounds on the

Steiner diameter of a graph”. In: Discrete Appl. Math. 160.12 (2012), pp. 1845–

1850.

[5] Patrick Ali, Simon Mukwembi, and Peter Dankelmann. “Steiner diameter of

3, 4 and 5-connected maximal planar graphs”. In: Discrete Appl. Math. 179

(2014), pp. 222–228.

[6] P. Angelini et al. “Beyond-Planarity: Density Results for Bipartite Graphs”.

In: abs/1712.09855 (2017). arXiv: 1712.09855. url: http://arxiv.org/abs/

1712.09855.

[7] J. Asplund et al. “Using block designs in crossing number bounds”. In: J. Com-

bin. Design. (2019), to appear.

[8] Karl Bopp. “Über das kürzeste Verbindungssystem zwischen vier Punkten”.

PhD thesis. Universität Göttingen, 1879.

58



www.manaraa.com

[9] Marcus Brazil et al. “On the history of the Euclidean Steiner tree problem”.

In: Arch. Hist. Exact Sci. 68.3 (2014), pp. 327–354.

[10] Jarosław Byrka et al. “An improved LP-based approximation for Steiner tree”.

In: STOC’10—Proceedings of the 2010 ACM International Symposium on The-

ory of Computing. ACM, New York, 2010, pp. 583–592.

[11] Matteo Cavaleri, Alfredo Donno, and Andrea Scozzari. “Total distance, Wiener

index and opportunity index in wreath products of star graphs”. In: Electron.

J. Combin. 26.1 (2019), Paper 1.21, 25.

[12] Gary Chartrand et al. “Steiner distance in graphs”. In: Časopis Pěst. Mat. 114.4

(1989), pp. 399–410.

[13] Richard Courant and Herbert Robbins. What Is Mathematics? Oxford Univer-

sity Press, New York, 1941, pp. xix+521.

[14] Éva Czabarka et al. “Biplanar crossing numbers. II. Comparing crossing num-

bers and biplanar crossing numbers using the probabilistic method”. In: Ran-

dom Structures Algorithms 33.4 (2008), pp. 480–496.

[15] Peter Dankelmann, Ortrud R. Oellermann, and Henda C. Swart. “The average

Steiner distance of a graph”. In: J. Graph Theory 22.1 (1996), pp. 15–22.

[16] Peter Dankelmann, Henda C. Swart, and Ortrud R. Oellermann. “Bounds on

the Steiner diameter of a graph”. In: Combinatorics, graph theory, and algo-

rithms, Vol. I, II (Kalamazoo, MI, 1996). New Issues Press, Kalamazoo, MI,

1999, pp. 269–279.

[17] E. W. Dijkstra. “A note on two problems in connexion with graphs”. In: Numer.

Math. 1 (1959), pp. 269–271.

[18] D. Z. Du and F. K. Hwang. “A proof of the Gilbert-Pollak conjecture on the

Steiner ratio”. In: Algorithmica 7.2-3 (1992). The Steiner problem, pp. 121–135.

59



www.manaraa.com

[19] D. Z. Du et al. “Steiner minimal trees on sets of four points”. In: Discrete

Comput. Geom. 2.4 (1987), pp. 401–414.

[20] R. H. Dyer and D. E. Edmunds. From real to complex analysis. Springer Un-

dergraduate Mathematics Series. Springer, Cham, 2014, pp. x+332.

[21] R. C. Entringer, D. E. Jackson, and D. A. Snyder. “Distance in graphs”. In:

Czechoslovak Math. J. 26(101).2 (1976), pp. 283–296.

[22] P. Erdős and R. K. Guy. “Crossing number problems”. In: Amer. Math. Monthly

80 (1973), pp. 52–58.

[23] Paul Erdős et al. “Radius, diameter, and minimum degree”. In: J. Combin.

Theory Ser. B 47.1 (1989), pp. 73–79.

[24] L. R. Foulds and R. L. Graham. “The Steiner problem in phylogeny is NP-

complete”. In: Adv. in Appl. Math. 3.1 (1982), pp. 43–49.

[25] M. R. Garey and D. S. Johnson. “Crossing number is NP-complete”. In: SIAM

J. Algebraic Discrete Methods 4.3 (1983), pp. 312–316.

[26] M. R. Garey and D. S. Johnson. “The rectilinear Steiner tree problem is NP-

complete”. In: SIAM J. Appl. Math. 32.4 (1977), pp. 826–834.

[27] J.D. Gergonne. “Solutions purement géométriques des problèmes de minimis

proposés aux pages 196, 232 et 292 de ce volume, et de divers autres prob-

lèmes analogues”. In: Annales de Mathèmatiques pures et appliquées 1 (1810),

375–384.

[28] E. N. Gilbert and H. O. Pollak. “Steiner minimal trees”. In: SIAM J. Appl.

Math. 16 (1968), pp. 1–29.

[29] Jerrold R. Griggs. “Spanning Trees and Domination in Hypercubes”. In: arXiv

e-prints (2019). arXiv: 1905.13292. url: https://arxiv.org/abs/1905.

13292.

60



www.manaraa.com

[30] R. W. Hamming. “Error detecting and error correcting codes”. In: Bell System

Tech. J. 29 (1950), pp. 147–160.

[31] Frank Harary and Robert W. Robinson. “The diameter of a graph and its

complement”. In: Amer. Math. Monthly 92.3 (1985), pp. 211–212.

[32] Michael A. Henning, Ortrud R. Oellermann, and Henda C. Swart. “On the

Steiner radius and Steiner diameter of a graph”. In: Ars Combin. 29.C (1990).

Twelfth British Combinatorial Conference (Norwich, 1989), pp. 13–19.

[33] E. Hoffmann. “Über das kürzeste Verbindungssystem zwischen vier Punkten der

Ebene”. In: Program des Königlichen Gymnasiums zu Wetzlar für das Schuljahr

von Ostern 1889 bis Ostern 1890 (1890).

[34] Makoto Imase and Bernard M. Waxman. “Dynamic Steiner tree problem”. In:

SIAM J. Discrete Math. 4.3 (1991), pp. 369–384.

[35] A. O. Ivanov and A. A. Tuzhilin. “The Steiner ratio: the current state”. In:

Mathematical problems in cybernetics. No. 11 (Russian). FizMatLit, Moscow,

2002, pp. 27–48.

[36] V. Jarník and M. Kössler. “O minimálních grafeth obeahujících n daných bodú”.

In: Cas Pest Mat a Fys 63 (1934), pp. 223–235.

[37] Tao Jiang, Zevi Miller, and Dan Pritikin. “Near optimal bounds for Steiner

trees in the hypercube”. In: SIAM J. Comput. 40.5 (2011), pp. 1340–1360.
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